推薦算法綜述Review of the Art of Recommendation Algorithms
楊博;趙鵬飛;
摘要(Abstract):
推薦是解決互聯網信息過載的主要途徑之一,已被廣泛應用于電子商務等多個領域.盡管已存在多種推薦算法,建造出更加智能、更加魯棒的推薦系統仍面臨諸多尚未解決的難題,推薦方法的研究仍是智能信息處理的研究熱點.文章首先闡述了推薦方法的研究背景、研究意義,之后分別介紹了協同過濾推薦算法、基于內容的推薦算法、基于圖結構的推薦算法和混合推薦算法,分析了各類算法的優點與不足,最后總結了主要的評價方法以及面臨的主要問題,提出了改進的方法和未來可能的研究方向.
關鍵詞(KeyWords): 信息過載;推薦系統;協同過濾;信息檢索;數據挖掘;機器學習
基金項目(Foundation): 國家自然科學基金(6087314960973088);; 中央高;究蒲袠I務費專項資金(200903177)
作者(Author): 楊博;趙鵬飛;
Email:
DOI: 10.13451/j.cnki.shanxi.univ(nat.sci.).2011.03.001
參考文獻(References):
- [1]Adomavicius G,Tuzhilin A.Toward the Next Generation of Recommender Systems:A Survey of the State-of-the-art andPossible Extensions[J].IEEE Transaction on Knowledge and Data Engineering,2005,17(6):734-749.
- [2]劉建國,周濤,汪秉宏.個性化推薦系統的研究與發展[J].自然科學進展,2009,19(1):1-15.
- [3]Breese J S,Heckerman D,Kadie C.Empirical Analysis of Predictive Algorithms for Collaborative Filtering[C]//Processof the 14th Conference on Uncertainty in Artificial Intelligence,1998:43-52.
- [4]Resnick P,Iakovou N,Sushak M,et al.GroupLens:An open Architecture for Collaborative Filtering of Netnews[C]//Process of the 1994 Computer Supported Cooperative Work Conference,1994:175-186.
- [5]Sarwar B,Karypis G,Konstan J.Item-based Collaborative Filtering Recommendation Algorithms[C]//Process of the 10thInternational Conference on World Wide Web,2001:285-295.
- [6]Linder G,Smith B,York J.Amazon.com Recommendations:Item-to-Item Collaborative Filtering[J].IEEE Internet Com-puting,2003,7(1):76-80.
- [7]Karypis G.Evaluation of Item-based Top-N Recommendation Algorithms[C]//Process of the International Conference onInformation and Knowledge Management,2001:247-254.
- [8]Deshpande M,Karypis G.Item-based top-N Recommendation Algorithms[J].ACM Transaction on Information Systems,2004,22(1):143-177.
- [9]Chen Y H,George E I.A Bayesian Model for Collaborative Filtering[C]//Process of the 7th International Workshop onArtificial Intelligence and Statistics,1999.
- [10]Ungar L H,Foster D P.Clustering Methods for Collaborative Filtering[C]//Process of the Workshop on Recommenda-tion System,1998.
- [11]Billsus D,Pazzani M.Learning Collaborative Information Filters[C]//Process of International Conference on MachineLearning,1998:46-54.
- [12]Pearl J.Probabilistic Reasoning in Intelligent Systems:Networks of Plausible Inference[M].San Francisco:MorganKaufmann,1988.
- [13]Canny J.Collaborative Filtering with Privacy Via Factor Analysis[C]//Process of the 25th International ACM SIGIRConference on Research and Development in Information Retrieval,2002:238-245.
- [14]Lemire D,Maclachlan A.Slope one Predictors for Online Rating-based Collaborative Filtering[C]//Process of the SIAMData Mining Conference,2005.
- [15]Shani G,Heckerman D,Brafman R.An MDP-based Recommender System[J].The Journal of Machine Learning Re-search,2005,6:1265-1295.
- [16]Ungar L H,Foster D P.Clustering Methods for Collaborative Filtering[C]//Process of the Workshop on RecommenderSystems,Menlo Park:AAAI Press,1998:112-125.
- [17]Getoor L,Sahami M.Using Probabilistic Relational Models for Collaborative Filtering[C]//Process of the WorkshopWeb Usage Analysis and User Profiling,1999.
- [18]Pavlov D,Pennock D.A Maximum Entropy Approach to Collaborative Filtering in Dynamic,Sparse,High-dimensionalDomains[C]//Process of 16th Annual Conference on Neural Information Processing System,2002:1441-1448.
- [19]Salton G.Automatic Text Processing[M].New York:Addison Wesley,1989.
- [20]Balabanovic M,Shoham Y.Fab:Content-based Collaborative Recommendation[J].Communications of the ACM,1997,40(3):66-72.
- [21]Pazzani M,Billsus D.Learning and Revising uer Profiles:The Identification of Interesting Web Sites[J].Machine Learn-ing,1997,27(3):313-331.
- [22]Deerwester S,Dumais S,Furnas G,et al.Indexing by Latent Semantic Analysis[J].The Journal of the American Societyfor Information Science,1990,40(6):391-407.
- [23]Hofmann T.Latent Semantic Models for Collaborative Filtering[J].ACM Transaction Information Systems,2004,22(1):89-115.
- [24]Hofmann T.Unsupervised Learning by Probalilistic Latent Semantic Analysis[J].Machine Learning,2001,42:177-196.
- [25]Somlo G,Howe A.Adaptive Lightweight Text Filtering[C]//Process of the 4th International Symposium on IntelligentData Analysis,2001:319-329.
- [26]Zhang Yi,Callan J,Minka T.Novelty and Redundancy Detection in Adaptive Filtering[C]//Process of 25th Annual In-ternational ACM SIGIR Conference,2002:81-88.
- [27]Roberrson S,Walker S.Threshold Setting and Performance Optimization in Adaptive Filtering[J].Information Retriev-al,2002,5:239-256.
- [28]Chang Ye-in,Shen Jun-hong,Chen T L.A Data Mining-based Method for the Incremental Update for Supporting Person-alized Information Filtering[J].Journal of Information Science and Engineering,2008,24(1):129-142.
- [29]Park H S,Yoo J O,Cho S B.A Context-aware Music Recommendation System Using Fuzzy Bayesian Networks with U-tility Theory[J].Fuzzy System and Knowledge Discovery,2006,4223:970-979.
- [30]Mooney R J,Bennett P N,Roy L.Book Recommending Using text Categorization with Extracted Information[C]//Process of AAAI′98/ICML′98 Workshop on Learning for Text Categorization,1998:49-54.
- [31]Zhou Tao,Ren J,Medo M.Bipartite Network Projection and Personal Recommendation[J].Physical Review E,2007,76:046115.
- [32]Zhou Tao,Zoltan Kuscsik,Liu Jian-guo.Solving the Apparent Diversity-accuracy Dilemma of Recommender Systems[J].In Process of the National Academy of Sciences,2010,107(10):4511-4517.
- [33]Yuan Quan,Zhao Shi-wan,Li Chen,et al.Augmenting Collaborative Recommender by Fusing Explicit Social Relation-ships[C]//ACM Conference on Recommender System Workshop on Recommender Systems and the Social Web,2009.
- [34]張少中,陳德人.面向個性化推薦的兩層混合圖模型[J].軟件學報,2009,20(zk):123-130.
- [35]Liu Jie,Shang Ming-sheng,Chen Duan-bing.Personal Recommendation Based on Weighted Bipartite Networks[C]//process of the 6th International Conference on Fuzzy Systems and Knowledge Discovery,2009.
- [36]Cattuto C,Loreto V,Pietronero L.Semontic Dynamics and Collaborative Tagging[J].In Process of the National Acade-my of Sciences,2007,104(5):1461-1464.
- [37]Zhang Zike,Lv Lin-yuan,Liu Jian-guo,et al.Empirical Analysis on a Keyword-based Semantic System[J].The EuropeanPhysical Journal B,2008,66(4):557-561.
- [38]Yu K,Schwaighofer A,Tresp V,et al.Probabilistic Memory-based Collaborative Filtering[J].IEEE Transaction onKnowledge and Data Engineering,2004,16(1):56-69.
- [39]Pennock D M,Horvitz E,Lawrence S,et al.Collaborative Filtering by Personality Diagnosis:a Hybrid memory-and Mod-el-based Approach[C]//Process of the 16th Conference on Uncertainty in Artificial Intelligence,2000:473-480.
- [40]Agrawal R,Imielinski T,Swami A.Mining Association Rules Between Sets of Items in Large Databases[C]//Process ofthe ACM SIGMOD Conference on Management of Data,1993:207-216.
- [41]Agrawal R,Srikant R.Fast Algorithms for Mining Association Rules[C]//Process of the International Conference onVery Large Databases,1994:487-499.
- [42]Han Jia-wei,Pei J,Yin Y,et al.Mining Frequent Patterns Without Candidate Generation[J].Data Mining and Knowl-edge Discovery,2004,8:53-87.
- [43]Burke R.Knowledge-Based Recommender Systems[J].Encyclopedia of Library and Information Systems,2000,69(32):180-200.
- [44]Shardanand U,Maces P.Social Information Filtering:Algorithms for Automating“Word of Mouth”[C]//Process ofConference on Human Factors in Computing Systems,1995:210-217.
- [45]Rong Jin,Luo Si.A Study of Methods for Normalizing User Ratings in Collaborative Filtering[C]//Process of the 27thAnnual International ACM SIGIR Conference on Research and Development in Information Retrieval,2004.
- [46]Rong Jin,Luo Si,Zhai Cheng-xiang.Collaborative Filtering with Decoupled Models for Preferences and Rating[C]//Process of the 12th International Conference on Information and knowledge Manangement,2003:309-316.
- [47]Zeng Chun,Xing Chun-xiao,Zhou Li-zhu.Similarity Measure and Instance Selection for Collaborative Filtering[C]//Process of the 12th Internationa Conference on World Wide Web,2003.
- [48]張光衛,李德毅,李鵬,等.基于云模型的協同過濾推薦算法[J].軟件學報,2007,18(10):2403-2411.
- [49]Delgado J,Ishaii N.Memory-based Weighted-majority Prediction for Recommender Systems[C]//Process of the ACMSIGIR′99 Workshop Recommender Systems:Algorithms and E-Valuation,1999.
- [50]Nakamura A,Abe N.Collaborative Filtering Using Weighted Majority Prediction Algorithms[C]//Process of the 15thInternational Conference on Machine Learning,1998:395-403.
- [51]Yi Ding,Xue Li.Time Weight Collaborative Filtering[C]//Process of the 14th ACM International Conference on Infor-mation and knowledge management,2005.
- [52]Yi Ding,Xue Li,Maria E.Recency-based Collaborative Filtering[C]//Process of the 17th Australasian Conference,2006.
- [53]Lee T Q,Pairk Y.A Time-based Approach to Effective Recommender Systems Using Implicit Feedback[J].Expert Sys-tem with Applications,2008,34(4):3055-3062.
- [54]Chen Yen-liang,Cheng Li-chen.A Novel Collaborative Filtering Approach for Recommending Ranked Items[J].ExpertSystems with Applications,2008,34(4):2396-2405.
- [55]Fouss F,Pirotte A,Renders J,et al.Random-Walk Computation of Similarities Between Nodes of a Graph with Applica-tion to Collaborative Recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2007,19(3):355-369.
- [56]Herlocker J L,Konstan J A,Terveen L G,et al.Evaluating Collaborative Filtering Recommender Systems[J].ACMTransactions on Informations Systems,2004,22:5-53.
- [57]Goldberg K,Toeder T,Gupta D,et al.Eigentaste:a Constant time Collaborative Filtering Algorithm[J].InformationRetrieval,2001,4:133-151.
- [58]陳健,印鑒.基于影響集的協同過濾推薦算法[J].軟件學報,2007,18(7):1685-1694.
- [59]Pitsilis G,Knapskog S J.Social Trust as a Solution to Address Sparsity-inherent Problems of Recommender Systems[C]//ACM Recommender System Workshop on Recommender System&The Social Web,2009.
- [60]羅辛,歐陽元新,熊璋,等.通過相似度支持度優化基于K近鄰的系統過濾算法[J].計算機學報,2010,33(8):1437-1445.
- [61]Connor M O,Herlocker J L.Clustering Items for Collaboreative Filtering[C]//Process of the ACM SIGIR Workshop onRecommender Systems,1999.
- [62]Sarwar B M,Karypis G,Konstan J A,et al.Recommender Systems for Large-scale E-commerce:Scalable NeighborhoodFormation Using Clustering[C]//Process of the 5th International Conference on Computer and Information Technology,2002.
- [63]李聰,駱志剛,石金龍.一種探測推薦系統攻擊的無監督算法[J].自動化學報,2011,37(2):160-167.
- [64]張鋒,常會友.基于分布式數據的隱私保持協同過濾推薦研究[J].計算機學報,2006,29(8):1487-1495.
- [65]Herlocker J L,Konstan J A,Riedl J.Explaining Collaborative Filtering Recommendations[C]//Process of the ACMConference on Computer Supported Cooperative Work,2000.
- [66]徐海玲,吳瀟,李曉東,等.互聯網推薦系統比較研究[J].軟件學報,2009,20(2):350-362.
文章評論(Comment):
|
||||||||||||||||||
|